Handbook biological waste water treatment

Uitgegeven door: Uitgeverij Quist

inhoudsopgave

TABLE OF CONTENTS

PREFACE v
ABOUT THE AUTHORS vi
ACKNOWLEDGEMENTS vi
LIST OF SYMBOLS AND ABBREVIATIONS xix
1 INTRODUCTION 1
1.1 ADVANCES IN SECONDARY WASTE WATER TREATMENT 1
1.2 TERTIARY WASTE WATER TREATMENT 3
1.3 TEMPERATURE INFLUENCE ON ACTIVATED SLUDGE DESIGN 4
1.4 OBJECTIVE OF THE TEXT 6
2 ORGANIC MATERIAL AND BACTERIAL METABOLISM 7
2.1 MEASUREMENT OF ORGANIC MATERIAL 7
2.1.1 The COD test 7
2.1.2 The BOD test 10
2.1.3 The TOC test 13
2.2 COMPARISON OF MEASUREMENT PARAMETERS 14
2.3 METABOLISM 16
2.3.1 Oxidative metabolism 16
2.3.2 Anoxic respiration 18
2.3.3 Anaerobic digestion. 19

3 ORGANIC MATERIAL REMOVAL 21
3.1 ORGANIC MATERIAL AND ACTIVATED SLUDGE COMPOSITION 21
3.1.1 Organic material fractions in waste water 21
3.1.2 The composition of organic sludge 24
3.1.2.1 Active sludge 24
3.1.2.2 Inactive sludge 25
3.1.2.3 Definition of sludge fractions 25
3.1.3 Mass balance of the organic material 26
3.2 STEADY-STATE MODEL OF THE ACTIVATED SLUDGE SYSTEM 31
3.2.1 Model development 31
3.2.1.1 Definition of sludge age 33
3.2.1.2 COD fraction discharged with the effluent 33
3.2.1.3 COD fraction in the excess sludge 33
3.2.1.4 COD fraction oxidised for respiration 37
3.2.1.5 Model summary 38
3.2.2 Model calibration 40
3.2.3 Model applications 43
3.2.3.1 Sludge mass and composition 43
3.2.3.2 Biological reactor volume 46
3.2.3.3 Sludge production and nutrient demand 48
3.2.3.4 Temperature effect 51
3.2.3.5 F/M ratio 52
3.2.4 Selection and control of the sludge age 54
3.3 AERATION 55
3.3.1 Aeration theory 57
3.3.1.1 Effect of impurities on kla and DOs 58
3.3.1.2 Effect of local atmospheric pressure on DOs 58
3.3.1.3 Effect of submergence level on DOs 59
3.3.1.3 Effect of temperature on kla and DOs 59
3.3.1.4 Oxygenation capacity for surface aerators 60
3.3.1.5 Power requirement for diffused aeration 62
3.3.2 Methods to determine the oxygen transfer constant 63
3.3.2.1 Determination of the standard oxygenation capacity 63
3.3.2.2 Determination of oxygenation capacity in mixed liquor 65
3.3.3.3 Determination of the aeration efficiency 68
3.4 GENERAL MODEL OF THE ACTIVATED SLUDGE SYSTEM 71
3.4.1 Model development 73
3.4.2 Model calibration 76
3.4.3 Application of the general model 77
3.5 CONFIGURATIONS OF THE ACTIVATED SLUDGE SYSTEM 78
3.5.1 Conventional activated sludge systems 78
3.5.2 Sequential batch systems 80
3.5.3 Carrousels 81
3.5.3 Aerated lagoons 82
4 NITROGEN REMOVAL 85
4.1 FUNDAMENTALS OF NITROGEN REMOVAL 86
4.1.1 Forms and reactions of nitrogenous matter 86
4.1.2 Mass balance of nitrogenous matter 88
4.1.3 Stoichiometrics of reactions with nitrogenous matter 93
4.1.3.1 Oxygen consumption 93
4.1.3.2 Effects on alkalinity 94
4.1.3.3 Effects on pH 97
4.2 NITRIFICATION 100
4.2.1 Nitrification kinetics 100
4.2.2 Nitrification in systems with non aerated zones 106
4.2.3 Nitrification potential and nitrification capacity 108
4.3 DENITRIFICATION 110
4.3.1 System configurations for denitrification 111
4.3.1.1 Denitrification with an external carbon source 111
4.3.1.2 Denitrification with an internal carbon source 112
4.3.2 Denitrification kinetics 115
4.3.2.1 Sludge production in anoxic/aerobic systems 115
4.3.2.2 Denitrification rates 116
4.3.2.3 Minimum anoxic mass fraction in the pre-D reactor 118
4.3.3 Denitrification capacity 120
4.3.3.1 Denitrification capacity in a pre-D reactor 120
4.3.3.2 Denitrification capacity in a post-D reactor 121
4.4 DESIGNING AND OPTIMISING NITROGEN REMOVAL. 124
4.4.1 Calculation of nitrogen removal capacity 124
4.4.2 Optimised design of nitrogen removal 128
4.4.2.1 Complete nitrogen removal 129
4.4.2.2 Incomplete nitrogen removal 132
4.4.2.3 Model enhancements 133
4.5 NEW DEVELOPMENTS IN NITROGEN REMOVAL SYSTEMS. 134
4.5.1 Nitrogen removal over nitrite - Sharon 135
4.5.1.1 Kinetics of high rate ammonium oxidation 137
4.5.1.2 Reactor configuration and operation 138
4.5.1.3 Required model enhancements 139
4.5.2 Nitrogen removal over nitrite - Babe 146
4.5.3 Anaerobic ammonium oxidation (Anammox) 147
4.5.3.1 Anammox process characteristics 150
4.5.3.2 Reactor design and -configuration 152
4.5.4 Effect on the main activated sludge process 157
4.5.5 Side stream nitrogen removal: evaluation and potential 163

5 PHOSPHORUS REMOVAL 165
5.1 BIOLOGICAL PHOSPHORUS REMOVAL 165
5.1.1 Mechanisms involved in biological phosphorus removal 165
5.1.2 Bio-P removal system configurations 169
5.1.3 Model of biological phosphorus removal 172
5.1.3.1 Enhanced cultures 172
5.1.3.2 Mixed cultures 177
5.1.3.3 Denitrification of bio-P organisms 181
5.1.3.4 Discharge of organic phosphorus with the effluent 183
5.2 OPTIMISATION OF BIOLOGICAL NUTRIENT REMOVAL 184
5.2.1 Influence of waste water characteristics 184
5.2.2 Improving substrate availability for nutrient removal 185
5.2.3 Optimisation of operational conditions 188
5.2.4 Resolving operational problems 191
5.3 CHEMICAL PHOSPHORUS REMOVAL 192
5.3.1 Stoichiometrics of chemical phosphorus removal 193
5.3.1.1 Addition of metal salts 193
5.3.1.2 Addition of lime 195
5.3.1.3 Effect on pH 195
5.3.2 Chemical phosphorus removal configurations 196
5.3.2.1 Pre-precipitation 198
5.3.2.2 Simultaneous precipitation 199
5.3.2.3 Post-precipitation 201
5.3.2.4 Sidestream precipitation 202
5.3.3 Design procedure for chemical phosphorus removal 205
5.4 NUTRIENT REMOVAL - DESIGN CASE 208

6 SLUDGE SETTLING 221
6.1 METHODS TO DETERMINE SLUDGE SETTLEABILITY 221
6.1.1 Zone settling rate test 221
6.1.2 Alternative parameters for sludge settleability 225
6.1.3 Relationships between different settleability parameters 225
6.1.4 Influence of sludge concentration and composition 226
6.2 MODEL FOR SETTLING IN A CONTINUOUS SETTLER 227
6.2.1 Determination of the limiting concentration Xl 231
6.2.2 Determination of the critical concentration Xc 232
6.2.3 Determination of the minimum concentration Xm 233
6.3 DESIGN OF SECONDARY SETTLERS 234
6.3.1 Optimised design procedure 234
6.3.2 Determination of the critical recirculation rate 238
6.3.3 Optimisation of the reactor - settler system 239
6.3.4 Applicability of the optimised settler design procedure 242
6.3.4.1 US EPA design guidelines 242
6.3.4.2 WRC and modified WRC design guidelines 243
6.3.4.3 STORA/STOWA design guidelines 243
6.3.4.4 ATV design guidelines 244
6.3.4.5 Solids flux compared with other design methods 244
6.3.4 Physical design aspects for sludge settlers 248
6.4 SETTLERS UNDER VARIABLE LOADING CONDITIONS 249
6.5 SLUDGE THICKENERS 253
6.6 SLUDGE BULKING AND SCUM FORMATION 255
6.6.1 Control of sludge bulking in aerobic systems 258
6.6.2 Control of bulking sludge in anoxic-aerobic systems 260
6.6.3 Non-specific measures to control bulking sludge 262
6.6.4 Causes and control of scum formation 265

7 NEW SYSTEM CONFIGURATIONS 267
7.1 MEMBRANE BIOREACTORS (MBR) 268
7.1.1 MBR configurations 270
7.1.1.1 Submerged MBR 271
7.1.1.2 Cross-flow MBR 273
7.1.1.3 Comparison of submerged and cross-flow MBR 275
7.1.2 Theoretical concepts of membrane filtration 277
7.1.3 MBR design considerations 279
7.1.3.1 Pre-treatment 279
7.1.3.2 Module configuration 280
7.1.3.3 Membrane aeration 281
7.1.3.4 Key data of different membrane types 282
7.1.3.5 Impact on activated sludge system configuration 283
7.3.1.6 Integrated MBR design example 286
7.1.4 MBR operational considerations 296
7.1.4.1 Operation of submerged membranes 296
7.1.4.2 Operation of cross-flow membranes 297
7.1.4.3 Membrane fouling 297
7.1.4.4 Membrane cleaning 298
7.1.5 MBR technology: evaluation and potential 301
7.2 AEROBIC GRANULATED SLUDGE 302
7.2.1 Mechanisms responsible for granule formation 304
7.2.2 Design and operation of aerobic granulated sludge reactors 306
7.2.3 Start-up of aerobic granulated sludge reactors 308
7.2.4 Granulated sludge: evaluation and potential 309

8 SLUDGE TREATMENT AND DISPOSAL 311
8.1 EXCESS SLUDGE QUALITY AND QUANTITY 311
8.2 AEROBIC DIGESTION 314
8.2.1 Kinetic model for aerobic sludge digestion 315
8.2.1.1 Variation of the volatile sludge concentration 316
8.2.1.2 Variation of the oxygen uptake rate 316
8.2.1.3 Variation of the nitrate concentration 317
8.2.1.4 Variation of the alkalinity 317
8.2.1.5 Variation of the BOD 321
8.2.2 Aerobic digestion in the main activated sludge process 321
8.2.3 Aerobic digester design 324
8.2.4 Optimisation of aerobic sludge digestion 329
8.2.5 Operational parameters of the aerobic digester 334
8.3 ANAEROBIC DIGESTION 339
8.3.1 Stoichiometry of anaerobic digestion 342
8.3.2 Configurations used for anaerobic digestion 344
8.3.3 Influence of operational parameters 347
8.3.4 Performance of the high rate anaerobic digester 350
8.3.5 Energy generation in anaerobic sludge digesters 356
8.3.6 Design and optimisation of anaerobic digesters 357
8.4 STABILISED SLUDGE DISPOSAL 359
8.4.1 Natural sludge drying 360
8.4.2 Design and optimisation of natural sludge drying beds 364
8.4.2.1 Determination of the percolation time 365
8.4.2.2 Determination of the evaporation time 366
8.4.2.3 Influence of rain on bed productivity 372
8.4.3 Accelerated sludge drying with external energy 373
8.4.3.1 Use of solar energy 374
8.4.3.2 Use of combustion heat from biogas 376

9 ANAEROBIC-AEROBIC WASTE WATER TREATMENT 379
9.1 MODERN ANAEROBIC WASTE WATER TREATMENT PROCESSES 380
9.1.1 Performance of different anaerobic treatment configurations 382
9.1.1.1 Anaerobic filter 382
9.1.1.2 Fluidised and expanded bed systems 383
9.1.1.3 Upflow Anaerobic Sludge Blanket (UASB) reactor 384
9.1.1.4 The RALF system 385
9.1.2 Comparison of different anaerobic sewage treatment systems 386
9.2 MODEL FOR THE ANAEROBIC PRE-TREATMENT PROCESS 387
9.2.1 Sludge age as the key parameter for anaerobic treatment 388
9.2.2 Influence of temperature on anaerobic sewage digestion 390
9.3 ANAEROBIC-AEROBIC SYSTEMS FOR SECONDARY TREATMENT 393
9.3.1 Effect of anaerobic pre treatment on secondary post treatment 394
9.3.2 Stabilisation of aerobic sludge in the UASB reactor 396
9.3.3 Optimised design of anaerobic-aerobic treatment systems 398
9.4 ANAEROBIC-AEROBIC SYSTEMS FOR TERTIARY TREATMENT 403
9.4.1 Anaerobic digestion with reduced methanogenic efficiency 403
9.4.2 Application of new nitrogen removal configurations 405
9.5 MODIFICATIONS OF THE UASB REACTOR 406
9.5.1 The EGSB reactor 406
9.5.2 Two stage anaerobic digestion 407

10 INTEGRATED COST-BASED DESIGN AND OPERATION 409
10.1 PREPARATIONS FOR SYSTEM DESIGN 410
10.1.1 The basis of design 410
10.1.1.1 Waste water characteristics 411
10.1.1.2 Kinetic parameters and settleability of the sludge 414
10.1.2 Costing data 414
10.1.2.1 Investment costs 414
10.1.2.2 Operational costs 418
10.1.2.3 Annualised costs 419
10.1.3 Performance objectives 420
10.1.4 Applicable system configurations 421
10.1.5 Limitations and constraints 424
10.2 OPTIMISED DESIGN PROCEDURE 426
10.2.1 System A1: Conventional secondary treatment 426
10.2.2 System A2: Secondary treatment with primary clarification 436
10.2.3 System B1: UASB pre-treatment with nitrification 439
10.2.4 System C1: Tertiary treatment with nitrogen removal 452
10.2.5 System C2: Tertiary treatment with N and P removal 457
10.2.6 System comparison 464
10.2.7 Influence of the waste water temperature 465
10.2.8 Influence of the sludge age 467
10.2.9 Comparison of different operational regimes 469
10.3 OPERATIONAL OPTIMISATION PROCEDURE 472
10.4 FINAL REMARKS 474

APPENDICES 477
A1 DETERMINATION OF THE OXYGEN UPTAKE RATE 479
A1.1 DETERMINATION OF THE APPARENT OUR 480
A1.2 CORRECTION FACTORS OF THE APPARENT OUR 480
A1.2.1 Representativeness of mixed liquor operational conditions 480
A1.2.2 Critical dissolved oxygen concentration 481
A1.2.3 Hydraulic effects 482
A1.2.4 Absorption of atmospheric oxygen 482
A1.2.5 The relaxation effect 485
A2 CALIBRATION OF THE GENERAL MODEL 489
A2.1 CALIBRATION WITH CYCLIC LOADING 490
A2.2 CALIBRATION WITH BATCH LOADING 494
A3 THE NON-IDEAL ACTIVATED SLUDGE PROCESS 497
A4 DETERMINATION OF NITRIFICATION KINETICS 501
A4.1 METHODOLOGY 502
A4.2 APPLICATION EXAMPLE 504
A5 EXTENSIONS TO THE SIMPLIFIED MODEL 509
A5.1 IMPERFECT SOLID-LIQUID SEPARATION IN FINAL SETTLER 509
A5.1.1 Particulate organic nitrogen in the effluent 509
A5.1.2 Particulate organic phosphorus in the effluent 511
A5.1.3 Excess sludge production and composition 511
A5.2 NITRIFIER FRACTION IN THE VOLATILE SLUDGE MASS 512
SUBJECT INDEX 515
REFERENCE LIST 521

Deze tekst is afkomstig van www.boekenroute.nl